INDOLEAMINE 2,3 DIOXYGENASE (IDO) EXPRESSION IN LUNG CANCER

> KERENIDI N. Respiratory Department, University hospital of Larissa

Tumor –immune response Immune escape mechanisms

Munn H and Mellor L 2004; Trends Mol. Med. 10:15-18

Indoleamine 2,3 Dioxygenase -IDO

IDO

L- tryptophan

N- formylkynurenine

cytosolic monomeric hemoprotein
403aa long (MW 45,324KD)

Tone 1989

IDO functions

antimicrobial defence mechanism
 maternal tolerance toward the allogeneic fetus

suppresses T-cell responses to MHCmismatched allografts and to autoantigens in animal models of disease

□ role in immune escape of tumor cells

IDO expression

 Expressed constitutively at high levels in placenta, gut and epididymis, and at lower levels in spleen, lymph nodes and thymus

In the lung IDO is expressed at basal levels

IDO and Lung cancer

most human tumors constitutively express IDO

Tumor type	IDO-positive tumor samples ^a
	(no. positive per no. tested)
Prostatic carcinomas	11/11
Colorectal carcinomas	10/10
Pancreatic carcinomas	10/10
Cervical carcinomas	10/10
Endometrial carcinomas	5/5
Gastric carcinomas	9/10
Glioblastomas	9/10
Non-small-cell lung carcinomas	9/11
Bladder carcinomas	8/10
Ovarian carcinomas	8/10
Head and neck carcinomas	7/11
Esophageal carcinomas	7/10
Mesothel iomas	6/10
Renal cell carcinomas	5/10
Melanomas	11/25
Breast carcinomas	3/10
Thyroid carcinomas	2/10
Lymphomas	4/18
Small-cell lung carcinomas	2/10
Sarcomas	2/10
Hepatocarcinomas	2/5
Adrenal carcinomas	2/5
Choriocarcinomas	1/5
Cutaneous basocellular carcinomas	1/5
Testicular seminomas	0/10

Uyttenhove C 2003; Nature Med.

IDO and cancer

IDO is expressed by : > Cancer cells themselves > Cells in the infiltrating zone (macrophages, DCs) > Cells in tumor-draining lymph nodes

Subsets of cells express IDO in lung eosinophil granulocytes (NSCLC)

Astigiano S et al 2005, Neoplasia

How does IDO promote immune escape

Low tryptophan concentration

 Downstream metabolites (L-kynurenine, 3-hydroxyanthranilic acid)

Hwu P et al. 2000; J Immun 164:3596-99, Woo E et al 2001;Cancer Research 61:4766–72, Mellor A et al. 2002; J. Immun. 168: 3771-76, Munn H and Mellor L 2004; *Trends Mol. Med.* 10:15-18

AIM:

To investigate the expression of IDO
in lung cancer cell lines
surgically resected lung cancer tissues
autologous non malignant samples

Correlations of IDO expression with clinicopathological parameters

Material

Patient no	Gender	Age	Histology	Differentiation	pTNM status	pStage	Tumour volume (mm ³)	
1	F	56	ADC	poor	T1N1M0	IIA	15	
2	М	65	ADC	moderate	T3N0M0	IIB	56	
3	М	65	ADC	poor	T1N2M0	IIIA	15	
4	F	48	ADC	moderate	T1NOMO	IA	27	
5	F	59	ADC	well	T2N2M0	IIIA	120	
6	М	73	ADC	moderate	T2N0M0	IB	52	
7	М	55	ADC	moderate	T4N2M0	IIIB	57	
8	М	60	ADC	poor	T2N1M0	IIB	35	
9	М	65	ADC	poor	T3N0M0	IIB	55	
10	М	74	ADC	poor	T2N0M0	IB	26	
11	М	48	ADC	poor	T3N1M0	IIIA	1188	
12	М	71	ADC	poor	T2N2M0	IIIA	361	
13	М	61	SCC	poor	T2N0M1	IV	54	
14	М	67	SCC	moderate	T1NOMO	IA	8	
15	М	55	SCC	poor	T2N1M0	IIB	42	
16	М	79	SCC	moderate	T2N0M0	IB	14	
17	М	70	SCC	moderate	T2N0M0	IB	12	
18	М	63	SCC	moderate	T3N1M0	IIIA	27	
19	М	79	SCC	poor	T2N0M0	IB	37	
20	М	59	SCC	moderate	T2N1M0	IIB	23	
21	М	62	SCC	poor	T2N0M0	IB	14	
22	М	59	SCC	moderate	T1N1M0	IIA	13	
23	М	58	SCC	poor	T2N0M0	IB	29	
24	F	76	SCC	moderate	T2N0M0	IB	428	
25	M	40	SCLC	poor	T3N1M0	IIIA	225	
26	F	75	BAC	moderate	T2N0M0	IB	120	
27	M	74	BAC	moderate	T2N1M0	IIB	150	
28	М	59	BAC	poor	T4N0M1	IV	31	-

Methods

tumor tissue

normal tissue 2.5 - 11 cm

cancer cell lines:

CALU-1, CALU-6, GILI, ONET, SK-LU-1, NCI-H441, NCI-H460, NCI-H596, NCI-H661 qReal Time PCR for ABL and IDO

cDNA synthesis

RNA extraction

Reference tissue

(amartoma)

Methods

gReal Time – PCR SYBR supermix kit (Invitrogen, Paisley UK)

FORWARD5' GGTCATGGAGATGTCCGTAA 3'REVERSE5' ACCAATAGAGAGACCAGGAAGAA 3'50°C 5 s, 95°C 10 min and then45 cycles of 95°C 15 s and 60°C 1min.

Rotor Gene software

Results

IDO – LC Cell lines 3 / 9 4.7 ± 11.1 (0.0-33.9)

Results

21 / 24 Tumor

23 / 27 Normal

Patient no	IDO Expression by Tumor ^a	IDO Expression by Normal ^a	Ratio T/N
1	16.6	10.2	1,6
2	6.5	4.4	1,5
3	2.6	7.5	0,3
4	3.8	2.3	1,6
5	3.3	1.7	1,9
6	1.0	3.0	0,3
7	8.5	2.1	3,9
8	6.8	4.1	1,6
9	37.5	2.7	14,1
10	3.9	3.8	1,0
11	4.7	1.2	3,8
12	7.1	0.9	7,5
13	6.6	4.5	1,5
14	1.8	0.3	6,4
15	1.0	N/A ^b	-
16	1.0	1.4	0,7
17	N/A	8.8	-
18	9.0	4.9	1,8
19	2.9	2.2	1,3
20	N/A	5.2	-
21	N/A	N/A	-
22	N/A	N/A	-
23	1.9	0.6	3,2
24	1.6	2.0	0,8
25	1.1	2.2	0,5
26	70.0	2.4	29,1
27	2.4	0.8	3,1
28	1.5	2.7	0,5

a copies IDO/100 copies ABL . b Not available.

The relative expression of <u>IDO</u> in lung cancer cell lines (4.7±11.1) was significantly lower than that of all patients' tumor samples as well as that of the autologous non affected lung tissues

	IDO		
	Tumor	Normal	
Patients	8.46 ± 15.18	3.28 ± 2.51	
Adeno	11.75 ± 18.52	3.32 ± 2.54	
SCC	3.22 ± 2.96	3.32 ± 2.75	

Only in ADC the relative expression of <u>IDO</u> was higher in tumor samples than in non malignant lung tissues.

No statistically significant differences were noted between ADC and SCC regarding either the tumor samples or the autologous non affected samples.

No signif	icant correlation	s between	<u>IDO</u> e>	pression	
and clinic	copathological pa	arameters	were fo	ound	p-value
	Age	<70	16	7.07 ± 9.06	
		≥70	8	11.24 ± 23.83	0.538
		ď	19	5.67 ± 8.17	0.070
	SEX	Ŷ	5	19.06 ± 29.10	0.078
		Non smokers	4	12.55 ± 16.73	14/18
12.5.2	Smoke history	Ex smokers	7	5.18 ± 5.64	0.590
		Smokers	13	8.96 ± 18.53	
	Тиро	Adeno	15	11.75 ± 18.52	0.075
	гуре	SCC	8	3.22 ± 2.96	0.075
	Differentiation	G1-G2	11	9.90 ± 20.14	0.772
		G3	13	7.24 ± 10.00	0.772
	H.	T1-T2	17	7.90 ± 16.45	0.200
		T3-T4	7	9.82 ± 12.59	0.309
	N	N0	13	10.77 ± 20.28	0.417
	IN	N1-N2	11	5.73 ± 4.59	0.417
	M	MO	22	8.86 ± 15.80	
	141	M1	2	4.05 ± 3.60	
Starra	Stago	I–II	15	10.58 ± 18.99	0.551
	Stage	III-IV	9	4.93 ± 2.98	0.551
	Tumor volume	<50mm ³	12	4.40 ± 4.53	0.340
		≥50mm³	12	12.53 ± 20.62	0.540

Conclusion:

- Direct evidence is provided demonstrating that IDO mRNA can be constitutively expressed by lung cancer cells.
- The higher <u>IDO</u> expression observed in patients' samples can be attributed to the production of the enzyme by other cells recruited in the tumor microenvironment and the peri-tumoral lung area and/or to its induction by soluble factors of tumor origin.

 Future : IDO inhibition (immunotherapy and chemotherapy protocols)

Collaborators:

Department of Immunology and Histocombatibility, UHL Department of Pathology, UHL Thoracic Surgery Department, UHL Thoracic Surgery Department, Athens Medical Center Ludwig Institute for Cancer Research, Belgium Austin Research Institute, Australia

Funding:

Hellenic Ministry of Education, PYTHAGORAS, EPAEK II Project Grant

EU Marie Curie Incoming International Fellowship 021975-IRTALUNG

Phizer Hellas, Grant in Aid

Hellenic General Secretariat of R&T – ENTEP2004 Grant# 04EP 9

Hellenic General Secretariat of R&T – Matching funds

Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer. *Cancer Biol Ther* 2007, 6(8):1258-62.

