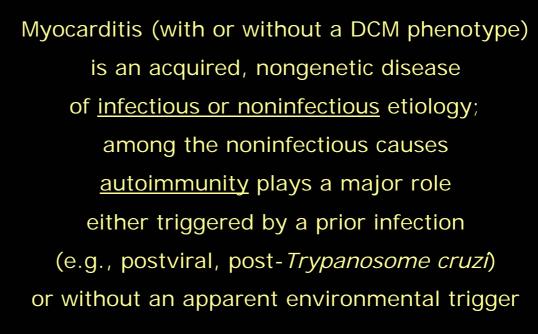
Myocarditis

from the immunological viewpoint

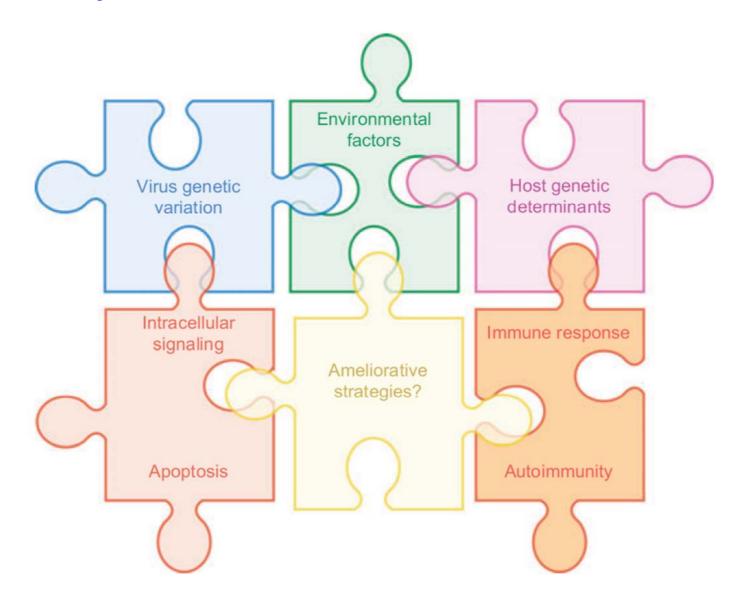
Anastasios E. Germenis

Professor and Head

agermen@med.uth.gr

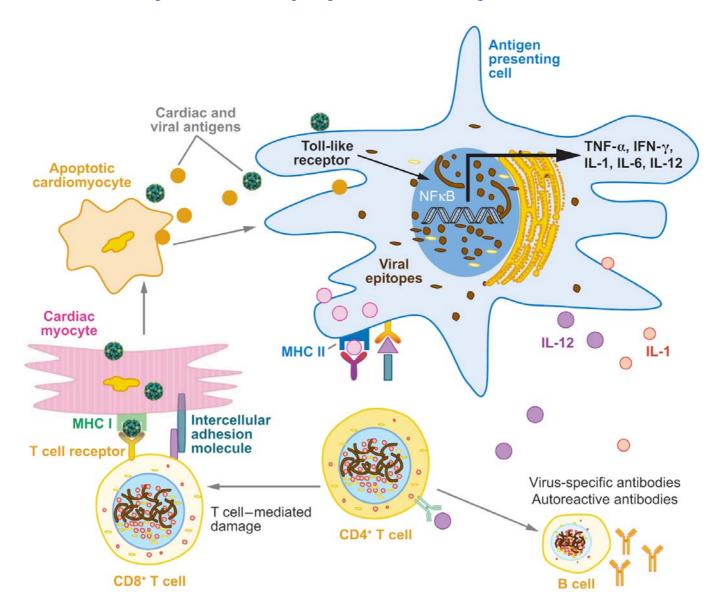

DEPARTMENT OF IMMUNOLOGY & HISTOCOMPATIBILITY - UNIVERSITY OF THESSALY

Myocarditis is a cardiac disease
associated with inflammation of the myocardium
and apoptotic degeneration and/or necrosis of adjacent myocytes
in the absence of a localized ischemic event


McManus BM.

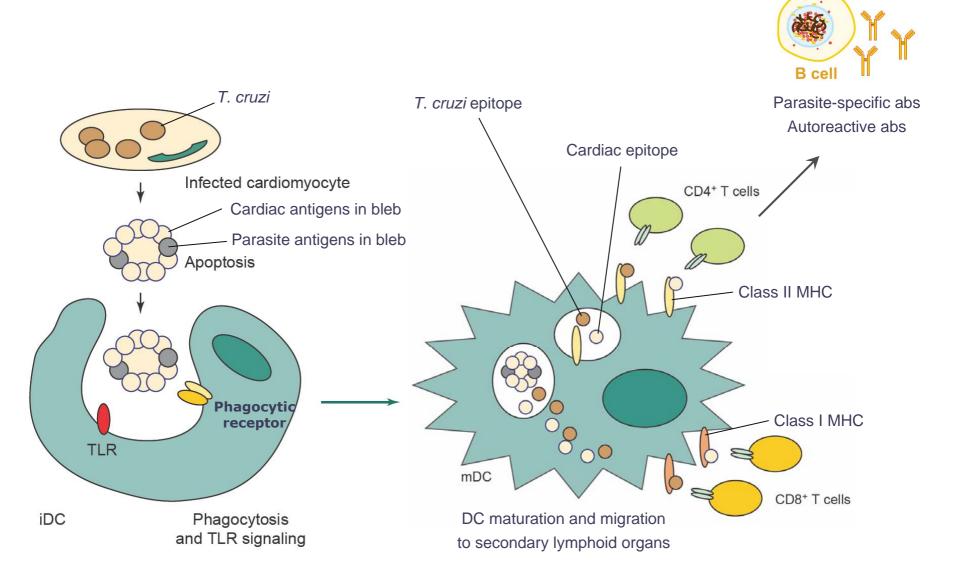
Atlas of Cardiovascular Pathology for the Clinician, Philadelphia, 2000

Elliott P, et al. *Eur Heart J* 2008; 29:270


Myocarditis

from the immunological viewpoint

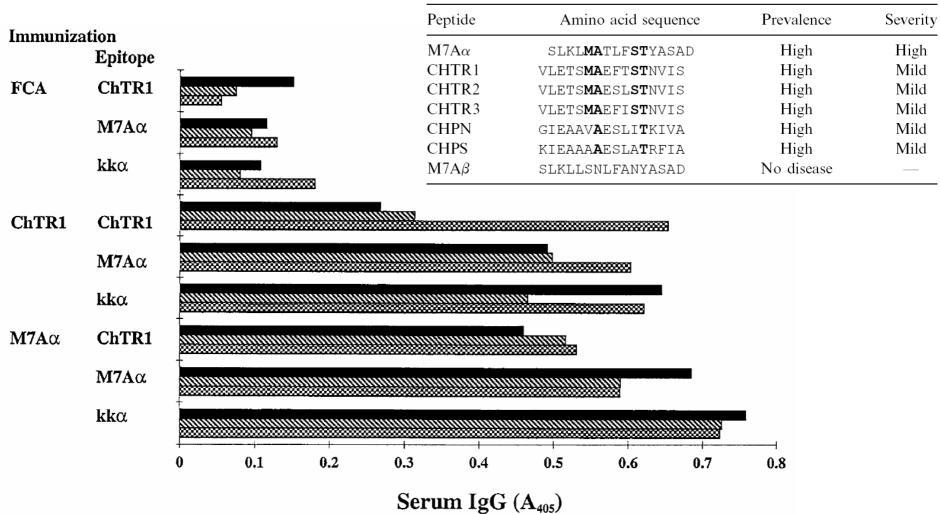
- Pathogen-induced immune-response-mediated myocardial injury
- Pathogen-induced anti-cardiac autoimmunity
- 3. Myocarditis as an organ-specific autoimmune disease


Immune-mediated myocardial injury in CVB3 myocarditis.

Immune-mediated myocardial injury in T. cruzi myocarditis.

Autoreactivity after *T. cruzi* infection_____

Host Component	Host	Molecular Definition	
Neurons	Н	Serum IgG	
Sciatic nerve homogenate	Н	Serum IgG	
Heart homogenate	Н	T cells	
Cardiomyocytes	H, Rb	T cells	
Heart homogenate	M	T cells	
Cardiac myosin	M	CD4+ T cells, serum IgG	
43-kDa Muscle glycoprotein	M	Serum IgG	
Nervous tissue, heart and skeletal muscle	M	Serum IgG	
Second extracellular loop, M2 cholinergic receptor	H,M	Serum IgG	
Second extracellular loop, $\beta 1$ adrenergic receptor	M	Serum IgG	
Small nuclear ribonucleoprotein	Н	Serum IgG	


Marin-Neto JA et al. Circulation 2007;115:1109

Antigenic mimicry -

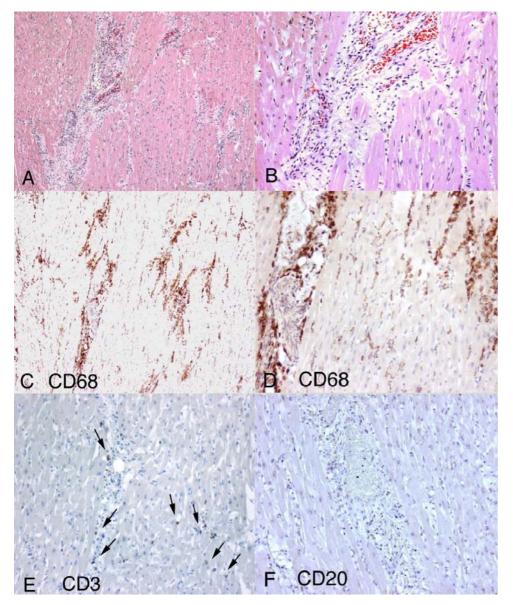
Chlamydia-derived peptides that mimic heart-specific a-mhc-derived peptides

Penninger JM, Bachmaier K. J Infect Dis 2000;181(Suppl 3):S498

Myocarditis

from the immunological viewpoint

- Pathogen-induced immune-response-mediated myocardial injury
- 2. Pathogen-induced anti-cardiac autoimmunity
- 3. Myocarditis as an organ-specific autoimmune disease


Major Rose-Witebski criteria for autoimmunity fulfilled in myocarditis_

- a. Mononuclear cell infiltration and abnormal HLA expression in the target organ in the absence of infectious agents or known inflammatory causes
- b. Disease induced in animals by immunization with relevant autoantigen, and/or passive transfer of serum, purified autoantibody and/or lymphocytes
- c. Autoantibody and/or autoreactive lymphocytes in situ within the affected tissue
- d. Identification and isolation of autoantigen(s) involved
- e. Circulating autoantibodies and/or autoreactive lymphocytes in patients and in unaffected family members
- f. Efficacy of immunosuppressive therapy

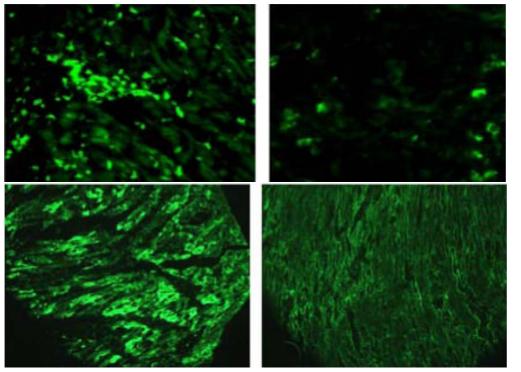
Histopathological manifestations of myocarditis _

- A. Diffuse interstitial myocardial inflammatory infiltrate more prominent around interstitial capillaries and composed of macrophages and lymphocytes.
- B. Vasocentric inflammation (H&E stain).
- C-D. CD68⁺ macrophages were the most abundant cells present.
- E. Rare CD3+ lymphocytes.
- F. Essentially CD20immunohistochemical stain.

Tavora et al. Diagn Pathol 2008;3:21

Major Rose-Witebski criteria for autoimmunity fulfilled in myocarditis __

- a. Mononuclear cell infiltration and abnormal HLA expression in the target organ in the absence of infectious agents or known inflammatory causes
- b. Disease induced in animals by immunization with relevant autoantigen, and/or passive transfer of serum, purified autoantibody and/or lymphocytes
- c. Autoantibody and/or autoreactive lymphocytes in situ within the affected tissue
- d. Identification and isolation of autoantigen(s) involved
- e. Circulating autoantibodies and/or autoreactive lymphocytes in patients and in unaffected family members
- f. Efficacy of immunosuppressive therapy



J Mol Cell Cardiol. 2007 June; 42(6): 1054–1064.

Spontaneous myocarditis mimicking human disease occurs in the presence of an appropriate MHC and non-MHC background in transgenic mice

Taneja V,* Behrens M,* Cooper LT,‡ Yamada S,‡ Kita H,* Redfield MM,‡ Terzic A,‡ David C*

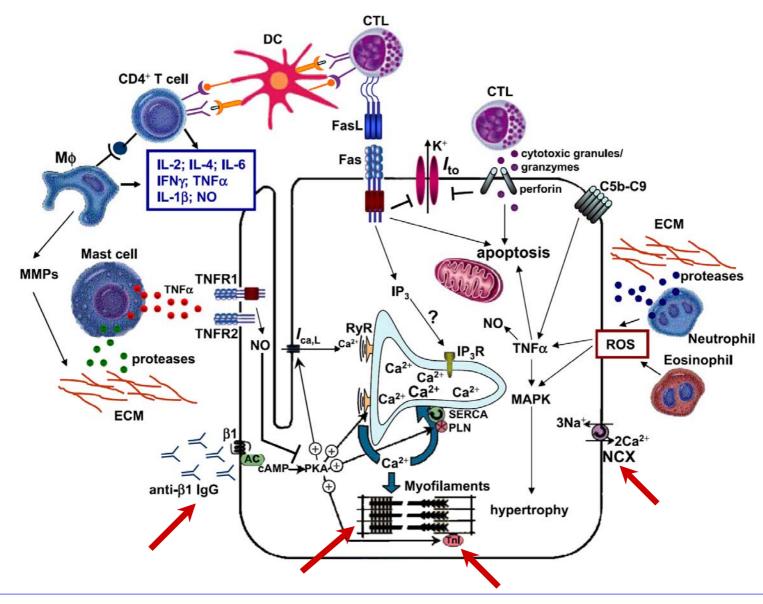
[‡]Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, USA

CD4+ T cells

IgG antibodies

...against cardiac myosin a heavy chain

^{*}Department of Immunology, Mayo Clinic College of Medicine, Rochester, USA


Major Rose-Witebski criteria for autoimmunity fulfilled in myocarditis_

- a. Mononuclear cell infiltration and abnormal HLA expression in the target organ in the absence of infectious agents or known inflammatory causes
- b. Disease induced in animals by immunization with relevant autoantigen, and/or passive transfer of serum, purified autoantibody and/or lymphocytes
- c. Autoantibody and/or autoreactive lymphocytes in situ within the affected tissue
- d. Identification and isolation of autoantigen(s) involved
- e. Circulating autoantibodies and/or autoreactive lymphocytes in patients and in unaffected family members
- f. Efficacy of immunosuppressive therapy

Targets of immune-mediated damage of cardiomyocyte.

Major Rose-Witebski criteria for autoimmunity fulfilled in myocarditis_

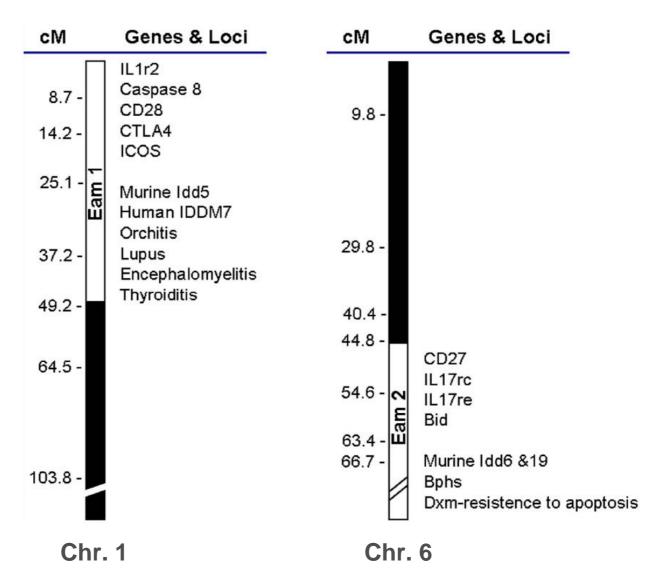
- a. Mononuclear cell infiltration and abnormal HLA expression in the target organ in the absence of infectious agents or known inflammatory causes
- b. Disease induced in animals by immunization with relevant autoantigen, and/or passive transfer of serum, purified autoantibody and/or lymphocytes
- c. Autoantibody and/or autoreactive lymphocytes in situ within the affected tissue
- d. Identification and isolation of autoantigen(s) involved
- e. Circulating autoantibodies and/or autoreactive lymphocytes in patients and in unaffected family members
- f. Efficacy of immunosuppressive therapy

Antiheart autoantibodies in myocarditis/DCM _____

Antibody	Percentage antibody-positive					
	Technique	AM	DCM	OCD	Normals	
Muscle-specific						
ASA	s-I IFL	47	10	NT	25	
AMLA	AMC	41	9	NT	12	
AFA	s-I IFL	28	24	NT	6	
IFA	s-I IFL	32	41	NT	3	
Heart-reactive	s-I IFL	59	20	NT	0	
	s-I IFL	NT	12-28	2133	4	
Anti-s.Na/K-ATPase	ELISA + western blot	NT	26	NT	2	
Organ-specific cardiac	s-I IFL + abs	41	26	1	3	
Antimitochondrial	3 3.53	• •		·	_	
M7	ELISA	13	31	10	0	
ANT	SPRIA	91	57	0	Ö	
BCKD-E2	ELISA	100	60	4	Ö	
Antilaminin	ELISA	73	78	25-35	6	
Anti-β1 receptor	ELIOT	70	70	20 00	Ü	
Inhibiting	LBI	NT	30-75	37	18	
Inhibiting	ELISA	NT	31	0	12	
Stimulating	Bioassay	96	95	8	0	
	ELISA	NT	26	10	1	
	FRET	NT	73	23	Ö	
Anti-M2 receptor	ELISA	NT	39	NT	7.5	
Anti-α and β MYHC	Western blot	NT	46	8	0	
Anti-MLC 1v	Western blot	NT	35	25	15	
Non-myofibrillar	Western blot	NT	46	17	0	
Anti-MYHC	Western blot	NT	67	42	NT	
Anti-MLC 1	Western blot	NT	17	0	NT	
Antitropomyosin	Western blot	NT	55	21	NT	
Antiactin	Western blot	NT	71	21	NT	
Anti-HSP-60	Western blot	NT	85	42	NT	
Anti-HSP-60, 70	Western blot	NT	10-14	42 1-2	3	
•	ELISA	37	10-14 44	1-2 16	3 2.5	
Anti-β MYHC Anti-α MYHC	ELISA	37 17	20	4	2.5	
Anti-α IVITHU	ELISA	17	20	4	2	

- 30–40% of myocarditis/DCM patients and their symptom-free family members
- 1% of patients with other cardiac disease
- 3% of normal subjects
- 17% of patients without cardiac disease, but with autoimmune polyendocrinopathy

AHA predict disease development at 5 years even in the absence of echocardiographic abnormalities (prospective family study)____


Staging of preclinical DCM

- No pre-DCM: negative AHA, normal echocardiogram
- Early: positive AHA, normal echocardiogram
- Advanced: positivity for one or more AHA
- Late pre-DCM: at least one antibody marker, LVE, or dFS

Caforio ALP, et al. Circulation 2007; 115:76

Thank you for your attention

Anastasios E. Germenis

Professor and Head

agermen@med.uth.gr

